
The Decaf Concept

The Decaf Project https://bitbucket.org/tpeterka1/decaf

High-Performance Decoupling of Tightly Coupled Data Flows

Tom Peterka, Jay Lofstead, Franck Cappello, Patrick Widener, Florin
Isaila, Lokman Rahmani, Hadrien Croubois, Guillaume Aupy

The Need for Middleware

Scientific Data Analysis Workflows Productivity and Performance

Resilience to Hard and Soft Faults

An example workflow in
cosmology transforms raw
particle positions in an N-body
simulation into a Voronoi
mesh, which is then used to
deposit particle density onto a
regular grid. Subsequent
density statistics are
computed in postprocessing.

Right: Workflow network for
data analysis of particle
density from an N-body

cosmological simulation is a
specific example of the

generic graph above.

Motivation
The need to distill enormous amounts of data into useful knowledge
is pushing the limits of computational science. Tightly coupled data
analysis and data generation--making the analysis interdependent
and closely coordinated with the computation--limits the flexibility

provided by individual modules. The Decaf project explores a
hybrid approach that combines both types of coupling---tight and

loose---in effect decoupling tightly coupled applications.

Left: Generic analysis workflow graph,
single or ensemble sources and
multiple users. Results are written to
persistent storage at the red line that
partitions the graph into operations
done at run time (in situ) and post hoc.

Left: (Today) Tightly-coupling in situ analysis by
writing custom main programs for each
combination of producer and consumer and
tuning the producer to the consumer and vice
versa. Bottom: Producers and consumers ought
to be written independently, and generic coupling
software should manage their connection.

Right: From a
workflow to a

dataflow, Decaf will
automatically expand
links with a small set

of primitives
composed in an

optimal way to satisfy
user requirements.

Left: Six major
Decaf coupling
modes.
Bottom: Coupling
example with a
data permutation
and pipelineable
consumer. The
producer
generates columns
of A,B,C,D while
the consumer
requires rows of A,
rows of B, etc. as
soon as they are
available.

Left: Intermediate dataflow nodes
couple producer to consumer. The
dataflow can be a simple NOOP or a
complete parallel program performing
complex data transformations.
Bottom: Decaf software stack.

Right: Silent data corruption in analysis task
validated with an auxiliary method, usually less
expensive and less accurate, yet able to detect

soft errors.
Bottom: Modeling the dataflow and optimally

adding replication and roll back mechanisms to
recover from hard (fail stop) errors and soft

errors detected above.

